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Ionospheric Transfer Function Tests:
Line of Sight and Slab

Max Light

January 25, 2021

1 Introduction
Ionospheric transfer function (ITF) algorithms determine the effects of the ionosphere on an elec-
tromagnetic (EM) signal as it propagates through. In this report, analytic formulas are derived
which can be used to compare results of ITF calculations from certain algorithms.

Three ITF algorithms are covered in this report. Line of sight (LOS) with no magnetic field
effects (birefringence), LOS with magnetic field effects, and the Snell’s law shell model.

The ITF algorithms covered in this report are all expressed in the frequency domain. In this
way, they are applied as linear time invariant (LTI) filter functions [3].

Signals in this report are assumed to have only a single component (i.e. x̂, ŷ or ẑ in a rectangular
coordinate system). Multi-component signals can be treated simply by applying the specific ITF
to each component separately.

The underlying theory of each ITF is not presented here.

2 LOS algorithms
The LOS algorithms are implemented as frequency domain filter functions for a signal that prop-
agates from a source underneath the ionosphere to a sensor located above, along a path that does
not deviate from a line connecting them. Refractive bending effects are only marginally included
as higher order terms in a series expansion.
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Figure 1: Simple diagram of LOS transionospheric EM signal propagation. The ionosphere is repre-
sented by the blue spherical shell region, and its effects are imposed on the signal along the orange part
of its path (S2).

Consider an EM signal originating at a source and traversing the ionosphere along a line of
sight to the detector, as shown in figure 1. The ionosphere is represented by the blue region
and is assumed to be a homogeneous spherical shell of some arbitrary thickness d and constant
plasma electron density n0 in a two dimensional geometry. The signal travels a total distance
S = S1 + S2 + S3, while it travels a distance L = S2 through the ionosphere. Thus, the amplitude
of the signal is decreased by a factor 1/S. The Earth’s magnetic field is assumed to be constant
through the shell, with a magnitude of B0. The angle β between the LOS and B0 is therefore also
a constant. Let the signal have a finite bandwidth, and assume that for each frequency component
ω

ω2 > ω2
p and ω >> ωc (1)

where ω2
p and ωc are the plasma and electron cyclotron frequencies, respectively

ω2
p = n0q

2

ε0me

and ωc = qB0

me

(2)

and ε0,me, and q are the permittivity and free space, electron mass, and electron charge in MKS
units respectively.

To summarize, the assumptions used above are

• plasma The ionosphere is a shell of constant density plasma.

• magnetic field The Earth’s magnetic field is a constant.

• B0 orientation The angle between the Earth’s magnetic field and the line of sight does not
change.
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• frequency ω2 > ω2
p, ω >> ωc.

Under the assumptions of equation 1, the X = ω2
p/ω

2 and Y = ωc/ω terms in the plasma index
of refraction [1] are much less than unity, and it can be Taylor expanded about X, Y << 1 to get

n(ω) = ck(ω)
ω
≈ 1− 1

2
ω2
p

ω2 + m
2
ω2
pωc

ω3 cos β + · · · (3)

This can be written explicitly in terms of the wave number k(ω)

k(ω) ≈ ω

c
− 1

2c
ω2
p

ω
+ m

2c
ω2
pωc

ω2 cos β + · · · (4)

where c is the speed of light and m = ±1.
The time for each frequency component of the signal to traverse the distance L = S2 through

the ionosphere is [2]
tL(ω) = L

vg(ω) (5)

where vg(ω) is the frequency dependent group velocity

vg(ω) = ∂ω

∂k
(6)

so that
tL(ω) = L

∂k

∂ω
(7)

Using equation 4 this becomes

tL(ω) ≈ L

c
+
Lω2

p

2cω2 − m ·
Lω2

pωc

cω3 cos β + · · · (8)

≈ L

c
+ q2Ln0

ε0me2cω2 − m · q3Ln0

ε0m2
ecω

3B0 cos β + · · · (9)

Under the homogeneous shell assumption Ln0 ≡ STEC. Using this, and the MKS values for the
constants in equation 9 to third order in frequency f results in

tL(f) = t0 + t2(f) + m · t3(f) (10)

where

t0 = L

c
(11)

t2(f) = 1.35627 · 10−7 · STEC
f 2 (12)

t3(f) = 7.67493 · 103 · STEC
f 3 ·B0 · cos β (13)

Equation 10 thus represents the time delay suffered by each frequency component of the signal
from the bottom to the top of the ionosphere. t0 is the time delay for each frequency over the
distance L without any dispersive effects (‘light delay’), t2(f) is the frequency dependent delay
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suffered by the signal due to only the effects of the plasma without the Earth’s magnetic field, and
s · t3(f) represents an additional delay due to the fast (m = -1) or slow (m = +1) mode dispersive
effects brought about by the Earth’s magnetic field (birefringence). This is shown graphically in
figure 2 for a STEC of 50 TECU (50 ·1016/m2), magnetic field magnitude of 0.25 Gauss, and angle
between the line of sight and B0 of 45o.

Figure 2: Time delay through the ionosphere ignoring the ‘light delay’for the LOS ITF algorithms.
STEC = 50 TECU, B0 = 0.25 Gauss, β = 45o. Black: t2(f) (no magnetic field effects), Red: t2(f)+t3(f)
(slow mode birefringence due to Earth’s magnetic field), Blue t2(f)− t3(f) (fast mode birefringence due
to Earth’s magnetic field).

3 LOS algorithms tests
For the LOS algorithms, the only parameters that determine the ionospheric effect on the signal
are the STEC (determined from the plasma density n0 and distance S2 in figure 1, magnetic field
amplitude B0, angle β, ionospheric width d in figure 1, and distance to the sensor (S1 +S2 +S3 in
figure 1).

The amplitude of the signal is reduced by the inverse of the total path length (S = S1+S2+S3).
This amplitude reduction is different when the Earth’s magnetic field is included. In that case,
the each frequency component of the signal splits in to two distinct modes of propagation (fast
and slow) where one, or both, could be cut off. The best way to test the amplitude calculation is
to propagate only one mode (m = +1 or m = −1 in equation 10). In either case, the result should
scale as 1/S.

The LOS algorithms basically act on the frequency domain of the original signal as frequency
dependent phase shifting filters. The phase response of a signal due to the ionosphere for these
algorithms is best tested by sending a wide band signal though the ionosphere and observing a
curve of maximum amplitude versus time on a frequency spectrogram of the resulting dispersed
signal. The maximum of each frequency component should occur at a time corresponding to that
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given in equation 10, as illustrated in figure 2, where s is set to zero if the Earth’s magnetic
field effects are not desired. Alternatively, single frequency ‘pulses’ could be used to compare the
delay through the ionosphere calculated from the algorithms and compared to equation 10. This
has the advantage of direct comparison in the time domain without the necessity of calculating a
time-frequency spectrogram.

4 Snell’s law shell algorithm

Figure 3: Geometry for the Snell’s law shell model.

For this representation, the ionosphere is again assumed to be a spherical shell of constant plasma
density n0. The same assumptions from section 2 apply, except that the frequency assumption
is removed so that a Taylor expansion of the index of refraction n(ω) in the plasma is no longer
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valid. Thus [1]

n(ω) =
√√√√√√√1− X(ω)

1− 1
2
Y 2(ω) sin2 β

1−X(ω) + m
[

1
4

Y 4 sin4 β

(1−X(ω))2 + Y 2(ω) cos2 β

]1/2 (14)

instead of equation 3.
In addition, the two dimensional geometry is constructed so that the source is located at point

P at (0, RE) where RE is the Earth’s radius. The ionosphere begins at an altitude r0 − RE with
a width d.

The difference between the LOS algorithms and this one is that the signal path (Poynting
vector) is refracted according to Snell’s law at the bottom and top sides of the ionosphere. The
direction of propagation of the Poynting vector can be treated like a ray path under the geometric
optics assumption [4, 1], which is valid for this construction and frequency range. This basically
means that S2 in figure 3 is a different length than in figure 2 for the same source location (see S ′2
in figure 2).

Consider an EM signal launched at an inclination angle α at point P as shown in figure 3.
Notice that the ray would travel along path S ′2 using the LOS algorithm, and along path S2 using
the Snell’s law shell algorithm. In what follows, the difference in STEC will be calculated for the
path S ′2 using the LOS algorithms and the path S2 using the Snell’s law shell algorithm

∆STEC = n0 · (S2 − S ′2) (15)

Referring to figure 3, geometry and Snell’s law are employed to reach an expression for the
difference in TEC. These steps are listed below.

1. geometry
Re

sin θi
= r0

sin(π − α) =⇒ θi = sin−1
(
RE

r0
sinα

)
(16)

2. geometry
θ0 = cos−1

(
x0

r0

)
(17)

3. Snell’s law
1 · sin θi = n(ω) · sin θr =⇒ θr = sin−1

(
1

n(ω) sin θi
)

(18)

(where np(ω) in figure 3 has been substituted with n(ω) for clarity).

4. geometry
r1

sin(π − θr)
= r0

sin θ′r
=⇒ θ′r = sin−1

(
r0

r1n(ω) sin θi
)

(19)

5. geometry
θ′r + (π − θr) + ∆θ = π =⇒ ∆θ = θr = θ′r (20)

but ∆θ = θ0 − θ1 as well, thus

θ1 = θ0 − θr + θ′r (21)

=⇒ θ1 = cos−1
(
x0

r0

)
− sin−1

(
1

n(ω) sin θi
)

+ sin−1
(

r0

r1n(ω) sin θi
)

(22)
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6. geometry
S2

2 = r2
0 + r2

1 − 2r0r1 cos (θ0 − θ1) (23)
from 5: θ0 − θ1 = θr − θ′r

=⇒ S2 =

√√√√r2
0 + r2

1 − 2r0r1 cos
{

sin−1
(

1
n(ω) sin θi

)
− sin−1

(
r0

r1n(ω) sin θi
)}

(24)

Using equation 15, results in

∆STEC = n0 ·


√√√√r2

0 + r2
1 − 2r0r1 cos

{
sin−1

(
1

n(ω) sin θi
)
− sin−1

(
r0

r1n(ω) sin θi
)}
− S ′2

 (25)

Note that n(ω) depends not only on frequency, but also the factor m, shown explicitly in equation 14.
Thus, this algorithm can be implemented with and without the Earth’s magnetic field.

5 Snell’s law shell algorithm tests
For this algorithm, the parameters that determine the ionospheric effect on the signal are the STEC
determined from the plasma density n0 and distance S2 in figure 3, magnetic field amplitude B0,
angle β, ionospheric width d, distance to the sensor (S = S1 +S2 +S3 in figure 3), and the launch
angle α relative to the vertical axis. Exercising this particular algorithm for the purpose of testing
need only be a function of the launch angle α. There is no need to solve for the ray that gets to a
predetermined sensor location. Simply choose a distance S3 at which to calculate the results.

Again, the amplitude of the signal is reduced by the inverse of the total path length (S =
S1 + S2 + S3). This amplitude reduction is different when the Earth’s magnetic field is included.
In that case, each frequency component of the signal splits into two distinct modes of propagation
(fast and slow) where one, or both, could be cut off. The best way to test the amplitude calculation
is to propagate only one mode (m = +1 or m = −1 in equation 10). In either case, the result should
scale as 1/S.

This algorithm also acts on the frequency domain of the original signal as a frequency dependent
phase shifting filter. However, there is not a exact analytic expression like equation 10 to determine
the time delay for each frequency component. Rather, equation 25 can be used as a test of the phase
response of the signal. For a given mode m, the distance S2 can be calculated from equation 24
(ignoring the nonphysical root). The distance S ′2 that the ray would have traveled along its line
of sight, as shown in figure 4, is calculated as follows. from the law of cosines

(r0 + d)2 = r2
0 + S

′2
2 − 2r0S

′
2 cos ε (26)

where
ε = π − θi (27)

also
sin θi
Re

= sin(π − α)
r0

=⇒ θi = sin−1
(
RE

r0
sinα

)
(28)

so that S ′2 can be calculated from α since, from equation 27,

ε = π − sin−1
(
RE

r0
sinα

)
(29)
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and thus
S ′2 = r0 cos ε±

[
r2

0 cos2 ε+ d(2r0 − d)
]1/2

(30)

where the nonphysical root is ignored.
Finally, S2 (equation 24) and S ′2 (equation 30) are used in equation 15 to solve for the difference

in STEC.

Figure 4: Geometry for calculating S′
2 in the Snell’s law shell model.
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